Lesson plan

Class: B.Sc. Ist N.M. &C. S.

Name : Monika Dhariwal And Manisha Kumari

Month	Mechanics	Electricity, magnetism and
		Electromagnetic theory
February	Constrained motion, Degree of freedom and	Electromagnetic
	generalized coordinates, Generalized	Induction:Motion
	displacement, velocity, acceleration, momentum,	al EMF, Faraday's laws of
	force and potential, Hamilton's variational principle,	electromagnetic induction,Self and
	Lagrange's equation of motion from Hamilton's	mutual inductance (L and M
	principle, Application of Lagrange's equation for	respectively) Energy stored in
	simple problems of mechanics, Simple harmonic	magnetic field. AC Circuit Analysis:
	motion, Simple pendulum Compound Pendulum,	AC circuit analysis using complex
	Differential equation of SHM and its solutions.	variables, AC circuits with (a) R and
	Kinetic and Potential Energy, Total Energy and	C (b) R and L
	their time	(c) R, L and C, Series and parallel
	averages, Damped oscillations Forced oscillations.	resonance circuits, Quality factors and
		its importance
March	Inertial and non-inertial frame of references,	Maxwell's Maxwell's
	Galilean transformation (velocity, acceleration) and	fixing of Ampere's law, Displacement
	its inadequacyMichelson-Morley Experiment and its	current, Maxwell's equations in
	outcome Postulates of Special Theory of Relativity	vacuum, Maxwell's equations in
	Lorentz Transformations, Length contraction, Time	matter, (The continuity equation,
	dilation	Poynting Theorem and Poynting
		vector , Momentum and angular
		momentum in electromagnetic
		field (qualitative only), Energy
		density in electromagnetic field
April	Relativistic transformation of velocity, frequency	The wave equation, Sinusoidal waves
	and wave number, Variation of mass with velocity	, Wave equations for E and B fields,
	Massless Particles, Mass-energy Equivalence,	Electromagnetic wave propagation
	Relativistic Doppler effect, Relativistic Kinematics,	through vacuum and isotropic
	Transformation of Energy and Momentum, Four	dielectric medium, transverse nature of
	Vectors	EM waves, Energy and momentum in
		EM waves, Propagation in linear
		media Reflection and transmission at
		Normal and Oblique incidence
		Brewster's angle, Scalar and vector
		potential for electromagnetic fields,
		Gauge Transformation Coulomb
		Gauge, Lorentz Gauge, Electric and
		magnetic dipole radiation (Magnetism
		as relativistic phenomenon,
		Transformation of electric and
		magnetic fields between
		two inertial frames
May	Revision	Revision

Lesson plan

Class: B.Sc. IInd N.M & C.S. Skill Enhancement Course

Name : Ms. Poonam & Dr. Kavita

January Electronic components. Passive comp Resistors and their types. Color coding of r Troubles in resistors. Capacitors and their Troubles in capacitors. Inductors and their Troubles in inductors. Internal resistant impedance.Types of Electrical switches. pole Single-throw" (SPST) switch. "Sin	
Troubles in resistors. Capacitors and thei Troubles in capacitors. Inductors and thei Troubles in inductors. Internal resistan impedance.Types of Electrical switches.	
Troubles in capacitors. Inductors and their Troubles in inductors. Internal resistant impedance.Types of Electrical switches.	
Troubles in inductors. Internal resistan impedance.Types of Electrical switches.	
impedance.Types of Electrical switches.	
nole Single-throw" (SPST) switch "Sin	
Double-throw" (SPDT) switch. "Dou	ble-pole
Double-throw" (DPDT) switch.	
Application of SPST, SPDT and DPDT swi	
February Relays. Fuses and disconnect switches.	
	nd-fault
protection. Grounding and isolating. Cons	
and working of MCB & MCCB and the	
Different types of conductors and cables. B	
wiring - Star and delta connection. Volta	-
and losses across cables and cond	luctors
Insulation. Solid and stranded cable.	
March Preparationofextensionboard. March Real (practical) and ideal voltage source	a Daal
March Real (practical) and ideal voltage source (practical)current source. Conversion of	
source into current source or vice-versa M	
power transfer theorem. Thevenin theorem	
norton's theorem. Familiarization with mul	
Voltmeter and ammeter. AC source -singl	
and three phase alternating current	•
Measurement of energy consumption	
circuits. Digital Circuits: Difference	
Analog and Digital Circuits, Binary N	
Decimal to Binary and Binary to I	
Conversion, AND, OR and NOT Gates, Rea	
of AND, OR and NOT Gates using	
resistances and Transistor, NAND and NO	
as Universal Gates, Realization of AND,	
NOT Gates using NAND Gates only an	
Gates only, XOR gates, XNOR Gates, De	
Morgan's Theorems, Boolean Laws.	

LESSON PLAN B.Sc. II N.M. & C.S. IV Semester (2022-23) Waves and Optics (CPL-403) to be taught by Ms. Poonam Devi

Jan

Wave motion: wave equation, solution of wave equation, particle and wave velocities, intensity of wave, superposition principle, group velocity, phase velocity.

Transverse waves: the string as a first oscillator, velocity of transverse vibrations of stretched strings, reflections and transmissions of waves on a string at a boundary, transverse wave on a string, travelling and standing waves on a string, normal modes of a string, reflections and transmission of energy

Longitudinal wave: velocity of longitudinal waves in a fluid in a pipe, Newton's formula for velocity of sound, Laplace's correction (qualitative), reflections and transmission of sound waves at a boundary, energy distribution in sound waves.

Feb

Interference: division of amplitude and division of wave front, Young's double slit experiment, Lloyd's mirror and Fresnel's Biprism,, phase change on reflection : Stokes' measurement of wave length and refractive index.

Test 1 & Assignment 1

March

Diffraction: Fresnel diffraction: Fresnel's assumptions, Fresnel's half- period zones for plane wave, rectilinear propagation of light, theory of a zone plate and its applications, multiple foci of a zone plate, qualitative description for Fresnel diffraction pattern of a straight edge, a slit and a wire.

Fraunhofer diffraction: single slit , double slit multiple slits and 'n' multiple slits, diffraction grating and it's resolving power, ray light criteria of the limit of resolution and resolving power of a telescope.

April

Polarization: plane polarized light – production and analysis , circular and elliptical polarization, optical activity, specific rotation.

Fibre optics: optical Fibre – construction and working, critical angle of propagation, modes of propagation, acceptance angle, attenuation. Advantages and applications of optical fibre.

Test 2 & Assignment 2

May – Revision & Class Tests

LESSON PLAN B.Sc. II N.M. & C.S. IV Semester (2022-23)

Statistical Mechanics by Dr. Kavita

Jan

Statistical basis of thermodynamics: statistical basis, probability and frequency, permutations and combinations, distribution of an distinguishable and indistinguishable particles in two boxes, Macrostate and microstate, thermodynamics probability, fluctutations and their dependence on n: (narrowing of probability distribution with increasing n), constraints on a system, static and dynamic system, most probable state, concept of cell in compartment, concept of ensembles and type of ensembles (qualitative idea only).

Universal law in statics: fundamental postulates of statistical mechanics, density of quantumstates of energy of a particle, entropy and thermodynamics probability, statistical interpretation of 2^{nd} law of thermodynamics, partition function and relation with thermodynamics quantities

Feb

Kinetic theory of gases: Maxwell- Boltzmann law of distribution of particle speed in anideal gas and its experimental verification, mean, RMS and most probable speeds.

Molecular collisions: Mean free path, Collision probability, estimates of mean free path, transport phenomenon in ideal gases: (1) viscosity, (2) thermal conductivity, (3) diffusion browning motion and its significance.

Equipartition law: degrees of freedom, law of equipartition of energy (no proof required) and its applications to the specific heat of monoatomic and diatomic gases and its limitations

Test 2 & Assignment 2

March

Classical statics: phase space and application to one dimension harmonic oscillator and free particle, division of phase space into cells, basis approach in three statics, Maxwell – Boltzmann distribution law, thermodynamics functions of finite numbers of energy levels, negative temperature, thermodynamics functions of an ideal gas, classical entropy expression,Gibbs paradox.

April

Bose- Einstein statistics: B.E. distribution law, thermodynamics functions of a completelydegenerate Bose gas, Bose- Einstein condensation, properties of liquid He (quantative description), radiations as photon gas, Bose's derivation of plank's law.

Fermi- dirac statistics: Fermi- dirac distribution law, thermodynamic functions of an idealcompletely degenerate, Fermi gas, Fermi energy, electron gas in a metal, specific heat of metals, comparision of three statistics M-B, B-E and F-D.May 2023 - Revision of Syllabus

Lesson Plan (2022-2023)

Even Semster Name - Sushil Kumar Class - B.sc 3rd (Non medical and Computer science) Paper- Solid State Physics

Unit - 1

Jan

Crystal structure: Crystalline and glassy forms, liquid crystal, crystal structure, periodicity, lattice and basis, crystal translations vector and axis. Unit cell and primitive cell, wingers Seitz primitive cell, symmetry operations for two dimensional crystal, Bravais lattice in two and three dimensional. Crystal planes and millers indices, interplaner spacing, crystal structure of zinc sulphide, silicon, sodium chloride and diamond.

Feb

Crystal structure: X ray diffraction, Bragg law and experiment Xray diffraction methods. K-space and reciprocal lattice and its physical significance, reciprocal lattice vector, reciprocal lattice to simple cubic lattice and bcc, and fcc.

Lattice vibrations: phonon concept, vibrations of monoatomic and diatomic, Acoustical and optical modes, dispersion relations for phonon, dulong and petits law, Einstein and debye theories of specific heat of solid, debye T3 law

Test & Assignments

Band theory: free electron gas model, nearly free electron model, bloch function, kronig penny model, velocity and effective mass of electron, distinction between metal, semiconductor and insulator ,hall effects.

Magnetic properties of matter: Dia, Para, ferromagnetic material ,classical Langevin theory of Dia and paramagnetic domains, curie law .

March

Super conductivity: Historical introduction, survey of superconductivity, Super conducting systems, high Tc superconductors, isotopic effects, critical magnetic fields, messiner effects, London theory and penetration depth , classification of superconductors, BCS theory of superconductivity, Flux quantization, Josephson effects Ac and DC, practical applications of superconductors and their limitations.

Test and assignments 2

April Revisions of syllabus

Name of Teacher : Dr. Komal Class : Bsc 3rd Non Medical and Computer science

Paper : Quantum Mechanics CPL -602

Jan

Wave function and its physical significance, time dependent and independent schrodinger wave function,Hermitian Opertor,Probability current density and its relation to wave function,Expection values and partical in 1- dimensional box

1st test and assignment

Application of Schrondinger Wave Equation, Free Partical and concept of group velocity, Tunneiing through finite potential barrier, uncertainty principles for position – momentum and energy

Feb

Larmor Precession, Bohr Magneton, Coupling scheme : LS and JJ coupling scheme, Hyperfine structure of spectral lines and its origin, Atom in external magnetic field; Normal Zeeman effect

Class test and revision of above topics

March

Rotaional spectra of diatomic molecules as riged rotator,Rotational spectra of diatomic molecules as non rigid rotator,Raman spectra,Molecules as Harmonic oscillator

April

Discuss the students problem, Revision of syllabus

Second test and assignment