Lesson Plan

(Session November-2020 to March-2021)

Name of Teachers : Ms Aarju, Ms Aarti

Class: B.Sc.-I (NM+CS) and BA-I

Paper: Algebra

Date	Topics
16.11.20 to 21.11.20	Definition of matrix and type of matrices
23.11.20 to 28.11.20	Definition of hermitian, skew hermitian matrix and question related to these matrices
30.11.20 to 05.12.20	Rank of matrix, elementary operations, row echelon matrix
07.12.20 to 12.12.20	Normal form of a matrix, elementary matrices
14.12.20 to 19.12.20	Linear dependence and independent of row and column matrices
21.12.20 to 26.12.20	Characteristic equation of a matrix, cayley Hamilton theorem
28.12.20 to 02.01.21	Minimal equation and exercise problem
04.01.21 to 09.01.21	Solution of System of linear equations by matrices
11.01.21 to 16.01.21	Orthogonal and unitary matrices and assignment
18.01.21 to 23.01.21	Exercise problem and class test
25.01.21 to 30.01.21	Bilinear and quadratic forms
01.02.21 to 06.02.21	Roots of an equation and synthetic division and unit test
08.02.21 to 13.02.21	Relation between roots and co-efficient of an equation
15.02.21 to 20.02.21	Transformation of equations
22.02.21 to 27.02.21	Solution of cubic and biquadratic equations
01.03.21 to 06.03.21	Descartes rule of signs
08.03.21 to 13.03.21	Revision

Lesson Plan

Name of Teacher: Dr. Sanjay Kumar Class : BA-I, B.Sc.-I (NM & CS) Subject: Calculus (CML 107)

Month	Topics Covered
November	Limit, continuity (- definition), Types of Discontinuties and differentiability of
	functions.Successive differentiation of functions in imlicit, explicit and
	parametric form.Lebnitz theorem.Some general theorems on differentiable
	functions and expansions.
December	Taylor's theorem with Langrange's form and Cauchy' form of remainder after
	'n' terms. Maclaurinform and Infinite Series. Asymptotes parallel to coordinate
	axis and Oblique Assymptotes in Cartesian and Polar form.Singular points.Points
	of inflexion. Multiple points. Cusps, nodes & conjugate points. Tracing of curves
	in Cartesian, parametric and polar co-ordinates, particularly, Asteroid, Cycloid
	and Cardoid.
	& Test-1
January	Curvature (radius of curvature for Cartesian curve, parametric curves, polar
	curves, pedal curves).Reduction formulae. Rectification, length of cuves in
	Cartesian, parametric and polar curves particularly Asteroid, Cycloid and
	Cardoid., intrinsic equations of curve.
	& Assignment
February	Quardrature (area)Sectorial area. Area bounded by closed curves in Cartesian,
	parametric form and polar form. Volumes and surfaces of solids of revolution
	about x-axis and about any line.
	& Test-2

Name of Teacher : Dr. Renu Sheoran

Subject: Advanced Calculas

Class: B.Sc./B.A.3rd Sem

SR.	MONTH	PERIOD	TOPICS
NO.			
1.	NOVEMBER	3rd week	1. Indeterminate forms
			2. Limit and continuity of real valued functions of two
		T / 1	variables.
		Last week	3. Partial differentiation, 1 otal differentials.
			4. Darboux intermediate value theorem for derivatives,
			composite functions and implicit functions,
2.	DECEMBER	1 st week	1. Change of variables, Homogeneous functions. uler's theorem
			on homogeneous functions,
		2 nd week	2. Taylor s theorem for functions of two variables.
		2 rd weat	2. Differentiability of real valued functions of two variables
		5 week	5. Differentiability of real valued functions of two variables.
		Last week	4. Seriwarz and Toung's theorem, implicit function theorem.
		Lust week	
3.		1 st week	1. Maxima, Minima and saddle points of two variables.
			Lagrange's method of multipliers.
	JANUARY	2 nd week	2. Continuity, Sequential continuity, properties of continuous
		- rd	functions, Uniform continuity. Taylors theorem with various
		3 rd week	form of remainders.
			3 Chain rule of differentiability, Mean value theorems,
		Last wook	4. Kone's theorem and Lagrange's mean
		Last week	value theorem and their geometrical interpretations
1	FEBRUARY	1 st week	1. Taylor's theorem with various form of remainders. Darboux
4.	FEDRUARI	1 WCCK	intermediate value theorem for derivatives
		2 nd week	2. Jacobians Beta and Gamma Functions
		3 rd week	3. Double and Triple Integral,
		Last week	4. Dirichlet's Integral and Change of order of Integration
	1		

Lesson Plan (Session November-2020 to March-2021)

Name of Teacher: Ms. Aarju

Subject: Numerical Analysis

Class: B. Sc (NM), B. Sc (CS) & B.A 2nd year

SR.	MONTHS	PERIOD	TOPICS
1.	November	3 rd week Last week	 Finite difference operators and their relations, Difference table, Finding the missing terms and effect of error in a difference tabular values. Interpolation with equal intervals: derivations of Newton's forward and Newton's backward interpolation formulae and their applications. Interpolation with unequal intervals: Newton's divided difference, Lagrange's Interpolation formulae and their applications. Central Differences Interpolation formulae : derivations of Gauss's forward and Gauss backward interpolation formulae, Sterling, Bessel formulae and their applications
2.	December	1 st week 2 nd week 3 rd week	 Numerical Differentiation: Relation between difference operator and derivative operator, Derivative of a function using interpolation formulae. Numerical Intergration: Newton-Cote's Quadrature formula. Simpson's one-third rule and Simpson's three-eight rule. Chebychev formula, Gauss Quadrature formula.
		Last week	4.Solution of Algebraic and Transcendental equations: Bisection method, Regula-Falsi Method and assignment.
3.	January	1 st week 2 nd week 3 rd week Last week	 Secant method, Newton-Raphson's. Newton's iterative method for finding p-th root of a number. Simultaneous Linear algebraic equations: Gauss- Elimination Method, Gauss- Jordan Method, Triangularization method(LU decomposition method) and Unit test.
4	February	1 st week 2 nd week 3 rd week Last week	Iterative method, Jacobi's method. Gauss-Seidal's method, Relaxation method. Revision Unit I Revision Unit II
5	March	1 st week 2 nd week	Revision Unit III Revision Unit IV

Govt. College For Women Hisar

Lesson Plan 2020-21

Name of Teacher : Ms. Deepal

Subject: Group and Rings Class: B. Sc./B.A.5thSem

Sr. No.	MONTH	PERIOD	TOPICS
1.	NOV	3 rd week	Binary operations, Definition of groups, abelian group, order of group and their related problems. Integral powers related problems. Order of an element amd their related problems.
		Last week	Subgroups and its related theorems and problems. Cyclic group, related theorem and problems. Cosets, solved examples. Imdex of a subgroup in group
2.	DEC	1 st week	Normal subgroups, simple groups, quotient group and their related theorem and problems.
		2 nd week	Homomorphisms of groups, isomorphisms, kernel of homomorphisms.
		3 rd week	Automorphism of a group and related theorems, centre of group, characteristic of subgroups.
		Last week	Commutator, permutations, symmetric group, transposition, alternating group, cayley theorem.
3.	JAN	1 st week	Ring, ring without or with zero divisor, subrings, characteristic of a ring.
		2 nd week 3 rd week	Ideals, maximal and prime ideal, ring homomorphisms Kernel of ring homomorphisms, embedding of rings
		Last week	Euclidean rings, principal ideal domain and their related theorems and problems.
4.	FEB	1 st week	Polynomial rings, polynomial over an integral domain and field and related theorems and problems
		2 nd week	Divisibility of polynomials over a field, unique factorization domain Primitivepolynomial, Gauss lemma, field of quotient of a UFD,
		3 rd week	Eisentein's irreducibility criterion
		Last week	

Nameof Teacher : Ms. Sonal Rani

Subject: Sequence & Series

Class: B. Sc./B.A.5thSem

Sr. No.	MONTH	PERIOD	TOPICS
1.	NOV	3 rd week Last week	 Boundedness of the set of real numbers; least upper bound, greatest lower bound of a set, neighborhoods, interior points, isolated points, limit points, open sets, closed set, interior of a set, closure of a set in real numbers and their properties. Bolzano-Weiestrass theorem, Open covers, Compact sets and Heine- Borel Theorem. Sequence: Real Sequences and their convergence, Theorem on limits of sequence.
			4.Cauchy's sequence, Cauchy general principle of convergence, Subsequences, Subsequential limits.
2.	DEC	1 st week	1.Infinite series: Convergence and divergence of Infinite Series, Comparison Tests of positive terms Infinite series, Cauchy's general principle of Convergence of series, Convergence and divergence of geometric series.
		2 nd week	 2.Hyper Harmonic series or p-series.Infinite series: D-Alembert's ratio test, Raabe's test, Logarithmic test, de Morgan and Bertrand's test. 3.Cauchy's Nth root test, Gauss Test, Cauchy's integral test, Cauchy's
		3 rd week	condensation test.
		Last week	4.Alternating series, Leibnitz's test, absolute and conditional convergence, Arbitrary series: abel's lemma, Abel's test, Dirichlet's test & Test-1
3.	JAN	1 st week	 Fourier's series: Fourier expansion of piecewise monotonic functions. Properties of Fourier Co-efficients, Dirichlet's conditions. Presentl's identity for Fourier series
		3 rd week	4 Equation series for even and add functions. Half range series Change
		Last week	of Intervals & Assignment.
4.	FEB	1 st week	1.Riemann integral, Darboux's theorem, Integrability of continuous and monotonic functions.
		2 nd week	2. The Fundamental theorem of integral calculus.
		3 rd week	3.Mean value theorems of integral calculus & Test-2
_		Last week	4. Revision
5.	MARCH	1 st week	Revision of 1 st unit
		2 rd week	Revision of 2 nd unit
		3 ^{ru} week	Revision of 3 ¹ & 4 ¹ unit

Name of Teacger : Mr. Anil Kumar

Class and Section : B.A.-III, B.Sc.-III(C.S.) and B.Sc.-III(N.M.)

Subject : Number Theory And Trigonometry

Weeks	Topics
16.11.2020-21.11.2020	Divisibility:
	1.1 Introduction
	1.2 The Principal of Mathematical Induction
	1.3 Divisibility
	1.4 Some Important Definitions and Results
	1.5 Theorems on Divisibity
	Examples
	Problems
23 11 2020-28 11 2020	1.6 Division Algorithm
23.11.2020 20.11.2020	1.7 Greatest Common Divisor and Least Common Multiple
	1.8 Some Theorems on G C D and L C M
	1.9 Some Important Definitions
	1 10 Some Theorems on prime Numbers
	1 11 Fundamental Theorems of Arithmetic
	1 12 Standard Form OR Canonical Form
	Fyamples
	Problems
30 11 2020-05 12 2020	Congruences:
30.11.2020 03.12.2020	2 1 Modulli of Integers
	2.2 Contriences
	2.3 Theorems on Congruences
	2.4 Linear Congruences
	2.5 Linear Diophantine Equations
	2.6 Some Important Theorems
	Examples
	Problems
07 12 2020-12 12 2020	Fermat's Wilson's and Chinese Remainder Theorems
07.12.2020 12.12.2020	3.1 Introduction
	3.7 Theorems and Fermat's Theorem
	3.3 Wilson's Theorem
	3.4 Converse of Wilson's Theorem
	3.5 Some Other Theorems
	Examples
	Problems
14 12 2020-19 12 2020	3.6 Simultaneous Linear Cogruences
14.12.2020 19.12.2020	3.7 Chinese Remainder Theorems
	Fyamples
	Problems
21 12 2020-26 12 2020	Fuler's Fuction and Residue Systems (mod m)
21.12.2020 20.12.2020	4.1 Introduction
	4.2 Fuler's Fuction (ω -Function)
	4.3 Multiplicative Function
	4.4 Some Theorems on α -Function
	4.5 Residues
	4.6 Complete Residue System (mod m)
	4.7 Reduced Residue System (mod m)
	4.8 Some Important Theorems on Residue System (mod m)
	4.9 Fuler's Generalization of Fermat's Theorem
	Fyamples
	Problems
	 4.7 Reduced Residue System (mod m) 4.8 Some Important Theorems on Residue System (mod m) 4.9 Euler's Generalization of Fermat's Theorem Examples Problems

28.12.2020-02.01.2021	Some Functions of Number Theory
	5.1 Introduction
	5.2 Greatest Integer Function (Bracket Function)
	5.3 Some Theorems on Bracket Function
	5.4 de Polignac's Formula
	5.5 Arithmetic Functions
	5.6 Divisor Function of n
	5.0 Divisor Function of n
	5.7 Signia Function of in
	5.8 Perfect Number
	Examples
	Problems
	Examples
	Problems
04.01.2021-09.01.2021	5.9 Some Theorems on $d(n)$ and $\sigma(n)$
	5.10 The Mobius Function
	5.11 Mobius Inversion Formula
	5.12 Converse of Mobius Inversion Formula
	Examples
	Problems
11.01.2021-16.01.2021	Ouadratic Residues And Quadratic Reciprocity Law
	6.1 Introduction
	6.2 Ouadratic Congruences
	6 3 Quadratic Residues
	6.4 Theorems Related to Quadratic Residues
	Examples
	Drobloms
18 01 2021 22 01 2021	6.5 Lagendra Symbol
18.01.2021-23.01.2021	6.6 Eular's Criterion Using Legendre Symbol
	6.0 Euler's Children Using Legendre Symbol
	6.7 Properties of Legendre Symbol
	6.8 Guass Lemma
	6.9 Theorems
	6.10 Gauss Reciprocity Law (Quadratic Reciprocity law)
	Examples and Problems
25.01.2021-30.01.2021	De Moivre's Theorem And Its Applications
	De Moivre's Theorem
	De Moivre's Theorem
	7.1 De Moivre's Theorem
	7.2 Roots of a Complex Number
	7.3 Solutions of Equations
	Examples
	Problems
01.02.2021-06.02.2021	7.4 Expansion of Trigonometric Functions
	7.5 Formation of Equations
	7.6 Expansion of Trigonometric Functions in Terms of Multiple Angles
	Examples
	Problems
08 02 2021-13 02 2021	Circular Functions of a Complex Variable
00.02.2021 13.02.2021	8.1 Introduction
	8.2 Exponential Functions of a Complex Variable
	8.3 Properties of Exponential Functions
	8.4 Circular Functions of Complex Variables
	8.5 Fuler's Theorem
	9.6 Da Majura'a Theorem for Compley Verichles
	8.7 Derived sites of Circular Exactly States
	8.7 Periodicity of Circular Functions
	8.8 Terigonometrical Formulae for Complex Quantities
	Examples
	Problems
15.02.2021-20.02.2021	Hyperbolic Functions
	Relation Between Hyperbolic and Circular Functions

	Relation Between Hyperbolic and Circular Functions
	9.1 Hyperbolic Functions
	9.2 Periodicity of Hyperbolic Functions
	9.3 Relation Between Hyperbolic and Circular Functions
	9.4 Formulae of Hyperbolic Functions
	9.5 Separation into Real and Imaginary Parts of Circular and Hyperbolic Functions
	Logarithm of a Complex Quantity
	10.1 Logarithm of a Complex Quantity
	10.2 General and Principal Values of Logarithm of z
	10.3 Laws of Logarithms for Complex Numbers
	10.4 The General Exponential Function
	10.5 General Logarithm Function
	Examples
	Problems
22.02.2021-27.02.2021	Inverse Circular and Inverse Hyperbolic Functions
22.02.2021 27.02.2021	11.1 Inverse Circular Functions of a Real Variable
	11.2 General Values and Principal Value
	11.3 Relation Between Inverse Functions
	11.4 Inverse Circular Functions of a Complex Number
	11.5 General Values and Principal Value
	11.6 Inverse Hyperbolic Functions
	11.7 General Values and Principal Value
	11.8 Inverse Hyperbolic Functions
	11.9 Gregory's Series
	11.10 Another Form of Gregory's Series
	11 11 General Value
	Evaluation of π
	Examples
	Problems
01 03 2021-06 03 2021	Summation of Series
01.05.2021-00.05.2021	12.1 Series of Sines and Cosines of Angles Which are in A P
	12.1 Series of Sines and Cosines of Angles which are in A.I.
	12.2 Method of Summation
	12.5 C FIS Method of Summation
	12.5 Series Depending upon The G.P. OR The Binomial Series
	12.5 Series Depending Upon Fixponential Sine and Cosine Series
	12.5 Series Depending Op In Exponential, Sine and Cosine Series
	12.7 Series Depending On Depending On Hyperbolic Series
	Examples
	Problems
08 03 2021-13 03 2021	Revision
15 03 2021-10.03 2021	Revision
15.05.2021-20.05.2021	
1	

Lesson Plan (Session November 2020 to March 2021)

Name of Teacher: Ms. Aarti Kadian

Class: B.Com.-I

Paper: Business Mathematics

Date	Topics
16.11.20 to 21.11.20	Logarithms, some important deduction on Logarithms, properties of Logarithms, quotient
	formula
23.11.20 to 28.11.20	Power formula, natural and common Logarithms, anti-logarithm, problems based on above
	topics.
30.11.20 to 05.12.20	Sequences, arithmetic progression, sum of n terms of an A.P. arithmetic mean, problems based
	on arithmetic progression.
07.12.20 to 12.12.20	Geometric progression, sum of n terms of G.P and infinite terms of G.P., geometric mean,
	application of A.P. and G.P.
14.12.20 to 19.12.20	Problems based on G.P., Differentiation, chain rule of differentiation, problems practice.
21.12.20 to 26.12.20	Differentiation of logarithmic and exponential functions, differentiation of implicit function,
	logarithmic differentiation.
28.12.20 to 02.01.21	Problems on above topics.
04.01.21 to 09.01.21	Local maxima and local minima, first and second derivative test, problems based on above
	topics.
11.01.21 to 16.01.21	Some Important definitions and types of matrices, basic operations on matrices, multiplication
	of matrices and their examples.
18.01.21 to 23.01.21	Transpose of matrix, determinants and problems based on determinants.
25.01.21 to 30.01.21	Problems discussion and unit test-1
01.02.21 to 06.02.21	Ad joint and inverse of matrix, problems discussion, solution of system of linear equations.
08.02.21 to 13.02.21	Compound interest: discussion on the problems of compound interest.
15.02.21 to 20.02.21	Annuities: discussion on types of annuities and some problems.
22.02.21 to 27.02.21	Present value of an annuity. Some practical problems on annuities.
01.03.21 to 06.03.21	Revision
08.03.21 to 13.03.21	Revision