GCW, Hisar Dept. of Chemistry Session: 2025-26 Odd Sem

NAME OF TEACHER: Dr. Satyender Kumar

CLASS: B.Sc. III (Vth SEM)

PAPER-CCL 503(ii): CHEMISTRY OF MAIN GROUP ELEMENTS, THEORIES OF

ACIDS AND BASES-I

PAPER-CCS 505(ii): FUEL CHEMISTRY

Week 1	PAPER I
	Acids and Bases: Bronsted-Lowry concept, conjugate acids and
	bases.
Week 2	
	Relative strengths of acids and bases, effects of substituent and
	solvent, differentiating and levelling solvents.
Week 3	
	Lewis acid-base concept, classification of Lewis acids and bases,
	Lux-Flood concept and solvent system concept.
Week 4	
	Hard and soft acids and bases (HSAB concept), applications of
	HSAB process.
Week 5	General Principles of Metallurgy
	General Principles of Metallurgy: Chief modes of occurrence of
	metals based on standard electrode potentials
	Assignment
Week 6	
	Ellingham diagrams for reduction of metal oxides using carbon
	and carbon monoxide as reducing agents.
Week 7	
	Hydrometallurgy with reference to cyanide process for gold and
	silver. Methods of purification of metals (Al, Pb, Ti, Fe, Cu, Ni,
	Zn, Au)
Week 8	
	Electrolytic refining, zone refining, van Arkel-de Boer process,
	Parting Process, Mond's process and Kroll Process.
	Class Test
Week 9	
	s- and p-Block Elements Periodicity in s- and p-block elements
	with respect to electronic configuration, atomic and ionic size,
	ionization enthalpy, electron gain enthalpy, electronegativity
	(Pauling scale).

Week 10	
	General characteristics of s-block metals like density, melting and boiling points, flame colour and reducing nature. Oxidation states of s- and p-block elements,
Week 11	•
	Inert-pair effect, diagonal relationships and anomalous behaviour of first member of each group. Allotropy in C, P and S
Week 12	
	Complex forming tendency of s block elements and a preliminary idea of crown ethers and cryptates, structures of basic beryllium acetate, salicylaldehyde/ acetylacetonato complexes of Group 1 metals.
Week 13	(SEC) FUEL CHEMISTRY
	Review of energy sources (renewable and non-renewable). Classification of fuels and their calorific value. Coal:Uses of coal (fuel and nonfuel) in various industries, its composition, carbonization of coal. Coal gas, producer gas.
	Assignment
Week 14	
	water gas—composition and uses. Fractionation of coal tar, uses of coal tar bases chemicals, requisites of a good metallurgical coke, Coal gasification (Hydro gasification and Catalytic gasification), Coal liquefaction and Solvent Refining. Petroleum and Petrochemical Industry: Composition of crude petroleum, Refining and different types of petroleum products and their applications.
Week 15	
	Fractional Distillation (Principle and process), Cracking (Thermal and catalytic cracking), Reforming Petroleum and non-petroleum fuels (LPG, CNG, LNG, bio-gas, fuels derived from biomass), fuel from waste, synthetic fuels (gaseous and liquids), clean fuels.
Week 16	CLASS TEST
Week 16	
	Petrochemicals: Vinyl acetate, Propylene oxide, Isoprene, Butadiene, Toluene and its derivatives Xylene. Lubricants: Classification of lubricants, lubricating oils (conducting and nonconducting) Solid and semisolid lubricants, synthetic lubricants. Properties of lubricants (viscosity index, cloud point, pore point) and their determination ASSINGMENT
Week 17	
	Revision
	TC 1151OH

GCW, Hisar Dept. of Chemistry Session: 2025-26 Odd Sem

NAME OF TEACHER: Dr. Satyender Kumar

CLASS: B.Sc. II (3rd SEM)

PAPER-C24SEC328T: FUEL CHEMISTRY

Week 1	Renewable and non-renewable energy sources		
Week 2	Classification of fuels and their calorific values		
Week 3	Uses of coal as fuel and non-fuel in industries		
Week 4	Carbonisation of coal, coal gas, producer gas, water gas-		
	composition and uses		
Week 5	Coal gasification- hydro gasification, catalytic gasification		
Week 6	Composition of crude petroleum ASSIGNMENT		
Week 7	Refining, different types of petroleum products and their		
	applications		
Week 8	Fractional distillation- principle and process CLASS TEST		
Week 9	Thermal & catalytic cracking		
Week 10	Reforming, petroleum and non-petroleum fuels		
Week 11	LPG, CNG, LNG, Biogas, Syn Gas, Synthetic Natural Gas		
Week 12	Classification of petrochemicals		
Week 13	Classification and functions of lubricants		
Week 14	Lubricating oils- conducting and non-conducting		
Week 15	Solid and semi solid lubricants, synthetic lubricants		
Week 16	Properties of lubricants, viscosity index, cloud point and pour		
	point		

Dr. Satyender Kumar

Department of Chemistry Lesson Plan (Odd Semester) SESSION 2025-26

Name of Assistant Professor: Dr. Rakesh Kumar

Class:- B.Sc-Ist (Semester- Ist)

Subject: - Discipline Specific Course (DSC) Chemistry – I [C24CHE101T]

Subject	Month	Syllabus to be Covered	
C24CHE101T	July 2025	Atomic Structure	
	•	Dual behaviour of matter and radiation, de-Broglie's	
		relation, Heisenberg's uncertainty principle, Quantum	
		mechanics. Time independent Schrodinger equation	
		(Derivation Excluded). Significance of Ψ and Ψ2,	
		Normal and orthogonal wave functions, Concept of	
		atomic orbitals, Significance of quantum numbers,	
		shapes of s , p and d orbitals, Rules for filling electrons	
		in various orbitals, Electronic configurations of the	
		atoms, Stability of half-filled and completely filled	
		orbitals.	
C24CHE101T	August 2025	Structure and Bonding	
		Localized and delocalized chemical bond, Van der	
		Waals interactions, Concept of resonance and its	
		applications, Hyperconjugation, Inductive effect,	
		Electromeric effect and their comparison.	
		Mechanism of Organic Reactions	
		Curved arrow notation, homolytic and heterolytic bond	
		fission, Types of reagents: electrophiles and	
		nucleophiles. Types of organic reactions: Substitution,	
		Addition, Condensation, Elimination, Rearrangement,	
		Isomerization. Reactive intermediates: Carbocations,	
		Carbanions, Free radicals and Carbenes (structure &	
		stability).	
		Class Test	
C24CHE101T	September 2025	Stereochemistry	
		Type of Streoisomers, Conformations with respect to	
		ethane, butane and cyclohexane. Optical isomerism,	
		Elements of symmetry, Concept of chirality (upto two	
		carbon atoms). Enantiomerism, Diastereomerism, Threo	
		and erythro diasteromers and Meso compounds;	

		Configuration: (relative and absolute), sequence rules D
		and L; R and S (for upto 2 chiral carbon atoms) system
		of nomenclature; Geometrical isomerism; cis - trans
		nomenclature; and E/Z Nomenclature (for up to two
		C=C systems).
		Assignment
C24CHE101T	October 2025	Gaseous State
		Kinetic theory of gases and derivation of the kinetic gas
		equation. Maxwell's distribution of velocities and
		energies (Graphic representation - derivation excluded),
		Temperature dependence of these distributions, Most
		probable velocity, Average velocity and Root Mean
		Square Velocity (Derivations excluded), Relationship
		among three types of velocities, Collision diameter,
		Collision number, Collision frequency and Mean free
		path (with Derivations), Deviation of real gases from
		ideal behaviour, Compressibility factor, Causes of
		deviation, Derivation of Van der Waal's Equation of
		State, its application in the calculation of Boyle's
		temperature.

Dr. Rakesh Kumar

Department of Chemistry Lesson Plan (Odd Semester) SESSION 2025-26

Name of Assistant Professor: Dr. Rakesh Kumar

Class:- B.Sc-2nd (Semester- 3rd)

Subject: - Discipline Specific Course (DSC) Chemistry – III [C24CHE301T]

Subject	Month	Syllabus to be Covered	
C24CHE301T	July 2025	Transition Elements (3d series) General group trends with special reference to electronic configuration, variable valency, colour, magnetic and catalytic properties, ability to form complexes and stability of various oxidation states (Latimer diagrams) for Fe and Cu. Lanthanoids and Actinoids Electronic configurations, oxidation states, colour, magnetic properties, lanthanide contraction, separation of lanthanides (ion exchange method only).	
C24CHE301T	August 2025	Alkyl and aryl halides Alkyl Halides Preparation: From Alkenes and Alcohols, Reactions: Nitrite and Nitro formation, Nitrile and isonitrile formation. Williamson's ether synthesis. Types of Nucleophilic Substitution (SN1, SN2 and SNi) reactions. Aryl Halides Preparation (Chloro, bromo and iodobenzene case): From phenol, Sandmeyer & Gattermann reactions. Chemical reactions (Chlorobenzene): Aromatic nucleophilic substitution (replacement by – OH group) and effect of nitro substituent. Benzyne Mechanism: KNH2/NH3 (or NaNH2/NH3). Reactivity and Relative strength of C-Halogen bond in alkyl, allyl, vinyl and aryl halides. Class Test	
C24CHE301T	September 2025	Alcohols and Phenols Alcohols Preparation: Preparation of 10, 20 and 30 alcohols using Grignard reagent, Ester hydrolysis, Reduction of aldehydes, ketones	

		and esters. Acidic nature reactions: With sodium, HX (Lucas test), Esterification, Oxidation (with PCC and acidic dichromate). Phenols Preparation: From Cumene, diazonium salts and Grignard reagent. Acidic nature, Chemical reactions: Electrophilic substitution: Nitration, halogenation and sulphonation. Reimer-Tiemann Reaction, Claisen rearrangement, Fries rearrangement and Schotten-Baumann Reaction, Kolbe's reaction (with mechanism)
		Assignment
C24CHE301T	October 2025	Conductance and Conductivity Introduction, Equivalent and Molar conductivity and their variation with dilution for weak and strong electrolytes, Kohlrausch's law of independent migration of ions, Transport number, Ionic mobility, Applications of conductance measurements: Determination of degree of ionization of weak electrolyte, Solubility and Solubility products of sparingly soluble salts, Ionic product of water. Conductometric titrations (only acid-base): Concept of pH and pKa, buffer solution, buffer action, Henderson-Hasselbalch equation.

Dr. Rakesh Kumar

Department of Chemistry Lesson Plan (Odd Semester) SESSION 2025-26

Name of Assistant Professor: Dr. Rakesh Kumar

Class:- $B.Sc-2^{nd}$ (Semester- 3rd)

Subject: - Minor Course (MIC) Basic Chemistry – I [C24MIC131T]

Subject	Month	Syllabus to be Covered
C24MIC131T	July 2025	Covalent Bond
		Valence bond theory approach, Various type of
		hybridisation and shapes of simple inorganic molecules
		and ions with suitable
		examples of linear, trigonal planar, square planar,
		tetrahedral, trigonal bipyramidal and octahedral
		arrangements (BeF ₂ , BF ₃ ,
		CH ₄ , PF ₅ , SF ₆ , IF ₇ ,
C24MIC131T	August 2025	Covalent Bond
		SO ₄ ²⁻ , ClO ₄ ⁻ , NO ₃ ⁻), Valence Shell Electron Pair
		Repulsion (VSEPR) theory to NH ₃ , H ₃ O ⁺ , SF ₄ , ClF ₃ ,
		H_2O ,
		$SnCl_2$, ClO_3^- and ICl_2^-).
		Class Test
C24MIC131T	September 2025	Alkanes
		Nomenclature, Classification of carbon atoms in
		alkanes and its structure. Isomerism in alkanes.
		Methods of formation: Wurtz reaction, Corey-House
		reaction.
		Assignment
C24MIC131T	October 2025	Alkanes
		Kolbe electrolytic reaction, and decarboxylation of
		carboxylic acids. Mechanism of free radical
		halogenation of alkanes: reactivity and selectivity

Dr. Rakesh Kumar

Department of Chemistry Lesson Plan (Odd Semester) SESSION 2025-26

Name of Assistant Professor: Dr. Rakesh Kumar

Class:- $B.Sc-2^{nd}$ (Semester- 3rd)

Subject: - Minor Course (MIC) Basic Chemistry - III [C24MIC331T]

Subject	Month	Syllabus to be Covered	
C24MIC331T	July 2025	Mechanism of Organic Reactions	
	August 2025	Curved arrow notation, Homolytic and heterolytic bond	
	September 2025	fission, Types of reagents: electrophiles and	
	October 2025	fission, Types of reagents: electrophiles and nucleophiles. Types of organic reactions: Substitution, Addition, Condensation, Elimination, Rearrangement, Isomerization. Reactive intermediates: Carbocations, Carbanions, Free radicals and Carbenes (structure & stability). Class Test Assignment	

Dr. Rakesh Kumar

GOVERNMENT COLLEGE FOR WOMEN, HISAR LESSON PLAN ODD SEMESTER,

SESSION 2025-26

Department of Chemistry

NAME EXTENSION LECTURER: Dr. PRIYANKA

Class:- B.Sc-III (Sem-6th)

DAYS: 3,4

Subject: - CCL-504(ii) Discipline Specific Course-II(ii) Chemistry of Main Group Elements-II

Subject	Month	Syllabus to be covered	
CCL-504(ii)	JULY		
Discipline		UNIT-I	
Specific		Structure, bonding and properties (acidic/ basic nature,	
Course-II(ii)		oxidizing/ reducing nature and hydrolysis of the	
Chemistry of		following compounds and their applications in	
Main Group		industrial and environmental chemistry wherever	
Elements-II		applicable:	
	AUGUST	Diborane and concept of multicentre bonding, hydrides	
		of Groups 13 (EH3), 14, 15, 16 and 17. Oxides of N and	
		P, Oxoacids of P, S and Cl	
		UNIT-II Halides and oxohalides of P and S (PCl3,	
		PCl5, SOCl2 and SO2Cl2) Interhalogen compounds. A	
		brief idea of pseudohalides (8 Hours) (7	
		Hours)ASSIGNMENT	
	SEPTEMBER	UNIT-III Noble gases: Rationalization of inertness of	
		noble gases, clathrates, preparation and properties of	
		XeF2, XeF4 and XeF6 ,bonding in these compounds	
		using VBT and shapes of noble gas compounds using	
		VSEPR Theory (7 Hours) TEST	
	OCTOBER	UNIT-IV Inorganic Polymers: Types of inorganic	
		polymers and comparison with organic polymers,	
		structural features, classification and important	
		applications of silicates.	
	NOVEMBER	Synthesis, structural features and applications of	
		silicones.Borazines and cyclophosphazenes –	
		preparation, properties and reactions. Bonding in	
		(NPCl2)3. REVISION	

NAME EXTENSION LECTURER: Dr. PRIYANKA

Class:- B.A & B.COM-II (Sem-4th)

DAYS = 5,6

Subject: - Chemistry Multidisciplinary Course (MDC) Chemistry of Oils and Dyes (Semester-I)

Paper Code: C24MDC104T

Subject	Month	Syllabus to be covered
Subject: - Chemistry	AUGUST	UNIT-1 Chemistry of Oils Introduction to
Multidisciplinary Course		oils and fats, classification, common fatty
(MDC) Chemistry of Oils		acids present in oils and fats, difference
and Dyes (Semester-I) Paper		between fats and oils,
Code: C24MDC104T		
	SEPTEMBER	Saponification value, acid value and iodine
		value (Only definitions). Applications and
		uses of different oils and fats
		TEST, ASSIGNMENT
	OCTOBER	UNIT-II Chemistry of Dyes Definition;
		Colour and constitution; Classification on
		the basis of origin & application methods,
		applications and uses of the following dyes:
		Methyl orange (azo dye); Malachite green
		(tiphenylmethane dye),
		ASSIGNMENT
	NOVEMBER	Phenolphthalein (Phthalein dye), Alizarin
		(anthraquinone dye), Indigo dye.
		REVISION

NAME EXTENSION LECTURER: Dr. PRIYANKA

Class:- B.Sc (Sem-4th) Minor

DAYS = 3-5

Subject: Chemistry Minor Course (MIC) Basic Chemistry – III (Semester-III) Paper Code:

C24MIC331T

Subject	Month	Syllabus to be covered
Chemistry Minor Course	AUGUST	UNIT-1 Periodic table and
(MIC) Basic Chemistry –		Properties Classification of
III (Semester-III) Paper		periodic table: s, p, d and f blocks,
Code: C24MIC331T		Periodic properties: atomic and
		ionic radii, ionization energy,
		electron affinity and
		electronegativity- trend in
		periodic properties (in s and p-
		block elements)
	CEDTEMBED	LINIT III Ionia Equilibria
	SEPTEMBER	UNIT-III Ionic Equilibria Strong, moderate and weak
		electrolytes, degree of ionization,
		factors affecting degree of
		ionization, ionization constant and
		ionic product of water. Ionization
		of weak acids and bases, pH scale,
		common ion effect. TEST,
		ASSIGNMENT
	OCTOBER	UNIT-IV Van der Waals forces
		and Hydrogen Bonding Brief
		discussion of various types of Van
		der Waals forces. Hydrogen
		Bonding – Definition, types,
		effects of hydrogen bonding on
		properties of substances,
		Applications.
	NOVEMBER	DEVIGION
	NOVEMBER	REVISION

NAME EXTENSION LECTURER: Dr. PRIYANKA

Class:- B.A-I & B.COM (Sem-I)

Subject: Chemistry Multidisciplinary Course (MDC)

Energy Resources and Water Treatment (Semester-III)

Paper Code: C24MDC304T

DAYS: 1,2

Subject	Month	Syllabus to be covered
	JULY	
		UNIT-I Energy Resources
		Energy resources: Renewable
		and Non-Renewable resources,
	AUGUST	Cells and Batteries, Fuel cell,
		Solar cell. UNIT-II Water
		Sources of drinking
	SEPTEMBER	water and uses, water
		conservation, Permissible TDS,
		Water pollution, Techniques of
		purification of water, R.O. water
		purification process TEST
	OCTOBER	(Osmosis and Reverse
		Osmosis), wastewater
		management Energy Resources
		and Water Treatment Lab
		ASSIGNMENT
	NOVEMBER	REVISION